* Step 1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            add(0(),X) -> X
            add(s(),Y) -> s()
            from(X) -> cons(X)
            fst(0(),Z) -> nil()
            fst(s(),cons(Y)) -> cons(Y)
            len(cons(X)) -> s()
            len(nil()) -> 0()
        - Signature:
            {add/2,from/1,fst/2,len/1} / {0/0,cons/1,nil/0,s/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add,from,fst,len} and constructors {0,cons,nil,s}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 1.
        The enriched problem is compatible with follwoing automaton.
          0_0() -> 1
          0_0() -> 2
          0_1() -> 1
          add_0(2,2) -> 1
          cons_0(2) -> 1
          cons_0(2) -> 2
          cons_1(2) -> 1
          from_0(2) -> 1
          fst_0(2,2) -> 1
          len_0(2) -> 1
          nil_0() -> 1
          nil_0() -> 2
          nil_1() -> 1
          s_0() -> 1
          s_0() -> 2
          s_1() -> 1
          2 -> 1
* Step 2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            add(0(),X) -> X
            add(s(),Y) -> s()
            from(X) -> cons(X)
            fst(0(),Z) -> nil()
            fst(s(),cons(Y)) -> cons(Y)
            len(cons(X)) -> s()
            len(nil()) -> 0()
        - Signature:
            {add/2,from/1,fst/2,len/1} / {0/0,cons/1,nil/0,s/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add,from,fst,len} and constructors {0,cons,nil,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))